1 resultado para bone marrow mesenchymal stem cell

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regeneration of bone defects with loss of substance remains as a therapeutic challenge in the medical field. There are basically four types of grafts: autologous, allogenic, xenogenic and isogenic. It is a consensus that autologous bone is the most suitable material for this purpose, but there are limitations to its use, especially the insufficient amount in the donor. Surveys show that the components of the extracellular matrix (ECM) are generally conserved between different species and are well tolerated even in xenogenic recipient. Thus, several studies have been conducted in the search for a replacement for autogenous bone scaffold using the technique of decellularization. To obtain these scaffolds, tissue must undergo a process of cell removal that causes minimal adverse effects on the composition, biological activity and mechanical integrity of the remaining extracellular matrix. There is not, however, a conformity among researchers about the best protocol for decellularization, since each of these treatments interfere differently in biochemical composition, ultrastructure and mechanical properties of the extracellular matrix, affecting the type of immune response to the material. Further down the arsenal of research involving decellularization bone tissue represents another obstacle to the arrival of a consensus protocol. The present study aimed to evaluate the influence of decellularization methods in the production of biological scaffolds from skeletal organs of mice, for their use for grafting. This was a laboratory study, sequenced in two distinct stages. In the first phase 12 mice hemi-calvariae were evaluated, divided into three groups (n = 4) and submitted to three different decellularization protocols (SDS [group I], trypsin [Group II], Triton X-100 [Group III]). We tried to identify the one that promotes most efficient cell removal, simultaneously to the best structural preservation of the bone extracellular matrix. Therefore, we performed quantitative analysis of the number of remaining cells and descriptive analysis of the scaffolds, made possible by microscopy. In the second stage, a study was conducted to evaluate the in vitro adhesion of mice bone marrow mesenchymal cells, cultured on these scaffolds, previously decellularized. Through manual counting of cells on scaffolds there was a complete cell removal in Group II, Group I showed a practically complete cell removal, and Group III displayed cell remains. The findings allowed us to observe a significant difference only between Groups II and III (p = 0.042). Better maintenance of the collagen structure was obtained with Triton X-100, whereas the decellularization with Trypsin was responsible for the major structural changes in the scaffolds. After culture, the adhesion of mesenchymal cells was only observed in specimens deccelularized with Trypsin. Due to the potential for total removal of cells and the ability to allow adherence of these, the protocol based on the use of Trypsin (Group II) was considered the most suitable for use in future experiments involving bone grafting decellularized scaffolds